33.4 Finding the closest pair of points Page 1 of 6

4 FREV < Day Day Up > | NEXT 3

33.4 Finding the closest pair of points

We now consider the problem of finding the closest pair of points in a set Q of n > 2 points. "Closest" refers
to the usual euclidean distance: the distance between points p, = (x;, y;) and p, = (X,, ,) is
Vi =)t + 0 =)7 Two points in set Q may be coincident, in which case the distance between them is

zero. This problem has applications in, for example, traffic-control systems. A system for controlling air or sea
traffic might need to know which are the two closest vehicles in order to detect potential collisions.

A brute-force closest-pair algorithm simply looks at all the (2) = &) pairs of points. In this section, we shall

describe a divide-and-conquer algorithm for this problem whose running time is described by the familiar
recurrence T (n) = 2T(n/2) + O(n). Thus, this algorithm uses only O(n g n) time.

The divide-and-conquer algorithm

Each recursive invocation of the algorithm takes as input a subset P < Q and arrays X and Y, each of which

contains all the points of the input subset P. The points in array X are sorted so that their x-coordinates are
monotonically increasing. Similarly, array Y is sorted by monotonically increasing y-coordinate. Note that in
order to attain the O(n Ig n) time bound, we cannot afford to sort in each recursive call; if we did, the

recurrence for the running time would be T(n) = 2T(n/2) + O(n Ig n), whose solution is T(n) = O(n Ig? n). (Use
the version of the master method given in Exercise 4.4-2.) We shall see a little later how to use "presorting"
to maintain this sorted property without actually sorting in each recursive call.

A given recursive invocation with inputs P, X, and Y first checks whether |P| < 3. If so, the invocation simply

performs the brute-force method described above: try all (7) pairs of points and return the closest pair. If | P
> 3, the recursive invocation carries out the divide-and-conquer paradigm as follows.

Divide: It finds a vertical line / that bisects the point set Pinto two sets P, and P such that |P;| =
[1PI/2], |Pgl = LIPI/2], all points in P, are on or to the left of line /, and all points in Pg are on or to the
right of /. The array X'is divided into arrays X; and Xp, which contain the points of P, and Pp

respectively, sorted by monotonically increasing x-coordinate. Similarly, the array Y'is divided into arrays
Y, and Yp, which contain the points of P, and P respectively, sorted by monotonically increasing y-

coordinate.

Conquer: Having divided Pinto P, and Pp, it makes two recursive calls, one to find the closest pair of
points in P, and the other to find the closest pair of points in Pg. The inputs to the first call are the subset
P, and arrays X, and Y; the second call receives the inputs P, Xg, and Y. Let the closest-pair

distances returned for P, and Pg be o, and &y, respectively, and let 6 = min(9,, op).

Combine: The closest pair is either the pair with distance & found by one of the recursive calls, or it is a
pair of points with one point in P, and the other in Pg. The algorithm determines if there is such a pair

whose distance is less than 6. Observe that if there is a pair of points with distance less than &, both
points of the pair must be within & units of line /. Thus, as Figure 33.11(a) shows, they both must reside

in the 256-wide vertical strip centered at line /. To find such a pair, if one exists, the algorithm does the
following.

mk: @MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0221.html 11/18/2012

33.4 Finding the closest pair of points Page 2 of 6

- = F,
L] L d - roa
'y .
T - T -
r\-: . -y at — # coancidend points,
- Ly W one in iy,
i v an P
- L d]
.
ormng el s,
T e] o I Iy

LAY, L i oo in i,
ia el]

Figure 33.11: Key concepts in the proof that the closest-pair algorithm needs to check only 7 points
following each point in the array Y'. (a) If p, € P, and p, € P are less than & units apart, they must

reside within a & X 28 rectangle centered at line /. (b) How 4 points that are pairwise at least & units
apart can all reside within a ® x d square. On the left are 4 points in P, and on the right are 4 points

in Pp. There can be 8 points in the & x 25 rectangle if the points shown on line | are actually pairs of
coincident points with one point in P, and one in Py,

1. It creates an array Y’, which is the array Y with all points not in the 25-wide vertical strip removed. The
array Y’ is sorted by y-coordinate, just as Y'is.

2. For each point pin the array Y’, the algorithm tries to find points in Y’ that are within é units of p. As
we shall see shortly, only the 7 points in Y’ that follow p need be considered. The algorithm computes
the distance from p to each of these 7 points and keeps track of the closest-pair distance &' found
over all pairs of points in Y’.

3. If & < 4, then the vertical strip does indeed contain a closer pair than was found by the recursive

calls. This pair and its distance & are returned. Otherwise, the closest pair and its distance & found by
the recursive calls are returned.

The above description omits some implementation details that are necessary to achieve the O(n Ig n) running
time. After proving the correctness of the algorithm, we shall show how to implement the algorithm to achieve
the desired time bound.

Correctness

The correctness of this closest-pair algorithm is obvious, except for two aspects. First, by bottoming out the
recursion when |P| < 3, we ensure that we never try to solve a subproblem consisting of only one point. The
second aspect is that we need only check the 7 points following each point p in array Y’; we shall now prove
this property.

Suppose that at some level of the recursion, the closest pair of points is p, € P, and pp € Pg. Thus, the
distance &’ between p, and pg s strictly less than . Point p, must be on or to the left of line /and less than 6
units away. Similarly, pg is on or to the right of /and less than & units away. Moreover, p, and pg are within &

units of each other vertically. Thus, as Figure 33.11(a) shows, p, and p are within a 6 x 2J rectangle
centered at line . (There may be other points within this rectangle as well.)

We next show that at most 8 points of P can reside within this & x 26 rectangle. Consider the X é square
forming the left half of this rectangle. Since all points within P, are at least & units apart, at most 4 points can
reside within this square; Figure 33.11(b) shows how. Similarly, at most 4 points in Py can reside within the 1]
X & square forming the right half of the rectangle. Thus, at most 8 points of P can reside within the 6 x 26

mk: @MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0221.html 11/18/2012

33.4 Finding the closest pair of points Page 3 of 6

rectangle. (Note that since points on line /may be in either P, or P, there may be up to 4 points on /. This

limit is achieved if there are two pairs of coincident points such that each pair consists of one point from P,
and one point from P, one pair is at the intersection of /and the top of the rectangle, and the other pair is

where /intersects the bottom of the rectangle.)

Having shown that at most 8 points of P can reside within the rectangle, it is easy to see that we need only
check the 7 points following each point in the array Y”.Still assuming that the closest pair is p, and pp, let us
assume without loss of generality that p, precedes pgin array Y'. Then, even if p, occurs as early as

possible in Y and pg occurs as late as possible, pg is in one of the 7 positions following p, . Thus, we have
shown the correctness of the closest-pair algorithm.

Implementation and running time
As we have noted, our goal is to have the recurrence for the running time be T(n) = 2T(n/2) + O(n), where T
(n) is the running time for a set of n points. The main difficulty is in ensuring that the arrays X, X5, Y;, and

Y Which are passed to recursive calls, are sorted by the proper coordinate and also that the array Y’ is

sorted by y-coordinate. (Note that if the array Xthat is received by a recursive call is already sorted, then the
division of set Pinto P, and Ppgis easily accomplished in linear time.)

The key observation is that in each call, we wish to form a sorted subset of a sorted array. For example, a
particular invocation is given the subset P and the array Y, sorted by y-coordinate. Having partitioned P into
P, and Pp, it needs to form the arrays Y, and Y, which are sorted by y-coordinate. Moreover, these arrays

must be formed in linear time. The method can be viewed as the opposite of the MERGE procedure from
merge sort in Section 2.3.1: we are splitting a sorted array into two sorted arrays. The following pseudocode
gives the idea.

1 lengthlY,] — length[Yg] — O

2 for i — 1to length[Y]

3 doif Y[] € P,

then lengthlY,] — lengthlY,] + 1
Y, [lengthlY,]] < YIi]

else length[Y] — length[Yg] + 1
Ygllength[Ygll — Y11

We simply examine the points in array Y'in order. If a point Y[] is in P, we append it to the end of array Y/;

N o o~

otherwise, we append it to the end of array Y. Similar pseudocode works for forming arrays X, X5, and Y'.

The only remaining question is how to get the points sorted in the first place. We do this by simply
presorting them; that is, we sort them once and for all before the first recursive call. These sorted arrays are
passed into the first recursive call, and from there they are whittled down through the recursive calls as
necessary. The presorting adds an additional O(n Ig n) to the running time, but now each step of the
recursion takes linear time exclusive of the recursive calls. Thus, if we let T(n) be the running time of each

recursive step and T'(n) be the running time of the entire algorithm, we get T'(n) = T (n) + O(nlg n) and

2T (n/2)+ O(n) ifn

=
o(1) ifn <

Tin)= : :

Thus, T(n) = O(nlg n) and T'(n) = O(nlg n).

Exercises 33.4-1

Professor Smothers comes up with a scheme that allows the closest-pair algorithm to check only 5 points

mk: @MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0221.html 11/18/2012

33.4 Finding the closest pair of points Page 4 of 6

following each point in array Y. The idea is always to place points on line /into set P,. Then, there cannot be
pairs of coincident points on line / with one point in PL and one in Pp. Thus, at most 6 points can reside in the
6 x 25 rectangle. What is the flaw in the professor's scheme?

Exercise 33.4-2

Without increasing the asymptotic running time of the algorithm, show how to ensure that the set of points
passed to the very first recursive call contains no coincident points. Prove that it then suffices to check the

points in the 5 array positions following each point in the array Y'.

Exercise 33.4-3

The distance between two points can be defined in ways other than euclidean. In the plane, the L, -distance
between points p, and p, is given by the expression (|x; - x,|™ + [y, - y2|’")”’". Euclidean distance, therefore,
is L,-distance. Modify the closest-pair algorithm to use the L,-distance, which is also known as the
Manhattan distance.

Exercise 33.4-4

Given two points p; and p, in the plane, the L ~distance between them is given by max(|x, - X,|,[y; - ¥sl).
Modify the closest-pair algorithm to use the L -distance.

Exercise 33.4-5

Suggest a change to the closest-pair algorithm that avoids presorting the Y array but leaves the running time
as O(nlg n). (Hint: Merge sorted arrays Y, and Y to form the sorted array Y.)

Problems 33-1: Convex layers

Given a set Q of points in the plane, we define the convex layers of Q inductively. The first convex layer of
Q consists of those points in Q that are vertices of CH(Q). For i > 1, define Q; to consist of the points of Q

with all points in convex layers 1, 2, ..., i- 1 removed. Then, the ith convex layer of Qis CH(Q) if Q; # @ and
is undefined otherwise.

a. Give an O(n?)-time algorithm to find the convex layers of a set of n points.

b. Prove that Q(nlg n) time is required to compute the convex layers of a set of n points with any model
of computation that requires Q(nIg n) time to sort n real numbers.

Problems 33-2: Maximal layers

Let Q be a set of n points in the plane. We say that point (x, y) dominates point (x', y)if x=x"and y=y'. A

point in Q that is dominated by no other points in Q is said to be maximal. Note that Q may contain many
maximal points, which can be organized into maximal layers as follows. The first maximal layer L, is the set

of maximal points of Q. For i > 1, the ith maximal layer L. is the set of maximal points in ¢ =, il

Suppose that Q has kK nonempty maximal layers, and let y; be the y-coordinate of the leftmost point in L, for /
=1, 2, ..., k. For now, assume that no two points in Q have the same x- or y-coordinate.

mk: @MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0221.html 11/18/2012

33.4 Finding the closest pair of points Page 5 of 6

a. Showthaty, >y, > --->y,.

Consider a point (x, y) that is to the left of any point in Q and for which y is distinct from the y-coordinate of
any pointin Q. Let Q' = Q U {(x, y)}.

b. Letjbe the minimum index such that Yi<Y, unless y < y,, in which case we let j = k + 1. Show that
the maximal layers of @ are as follows.

m If j < k, then the maximal layers of Q" are the same as the maximal layers of Q, except that L/.
also includes (x, y) as its new leftmost point.

m If j= k+ 1, then the first k maximal layers of Q" are the same as for Q, but in addition, Q" has a
nonempty (k + 1)st maximal layer: L, ., = {(x; y)}.

c. Describe an O(n g n)-time algorithm to compute the maximal layers of a set Q of n points. (Hint: Move
a sweep line from right to left.)

d. Do any difficulties arise if we now allow input points to have the same x- or y-coordinate? Suggest a
way to resolve such problems.

Problems 33-3: Ghostbusters and ghosts

A group of n Ghostbusters is battling n ghosts. Each Ghostbuster is armed with a proton pack, which shoots
a stream at a ghost, eradicating it. A stream goes in a straight line and terminates when it hits the ghost. The
Ghostbusters decide upon the following strategy. They will pair off with the ghosts, forming n Ghostbuster-
ghost pairs, and then simultaneously each Ghostbuster will shoot a stream at his chosen ghost. As we all
know, it is very dangerous to let streams cross, and so the Ghostbusters must choose pairings for which no
streams will cross.

Assume that the position of each Ghostbuster and each ghost is a fixed point in the plane and that no three
positions are collinear.

a. Argue that there exists a line passing through one Ghostbuster and one ghost such the number of
Ghostbusters on one side of the line equals the number of ghosts on the same side. Describe how to
find such a line in O(n Ig n) time.

b. Give an O(r? Ig n)-time algorithm to pair Ghostbusters with ghosts in such a way that no streams
cross.

Problems 33-4: Picking up sticks

Professor Charon has a set of n sticks, which are lying on top of each other in some configuration. Each stick
is specified by its endpoints, and each endpoint is an ordered triple giving its (x, y, z) coordinates. No stick is
vertical. He wishes to pick up all the sticks, one at a time, subject to the condition that he may pick up a stick
only if there is no other stick on top of it.

a. Give a procedure that takes two sticks a and b and reports whether a is above, below, or unrelated to
b.

b. Describe an efficient algorithm that determines whether it is possible to pick up all the sticks, and if so,
provides a legal sequence of stick pickups to do so.

Problems 33-5: Sparse-hulled distributions

Consider the problem of computing the convex hull of a set of points in the plane that have been drawn
according to some known random distribution. Sometimes, the number of points, or size, of the convex hull

of n points drawn from such a distribution has expectation O(n'-€) for some constant € > 0. We call such a

mk: @MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0221.html 11/18/2012

33.4 Finding the closest pair of points Page 6 of 6

distribution sparse-hulled. Sparse-hulled distributions include the following:
= Points drawn uniformly from a unit-radius disk. The convex hull has ©(n'’3) expected size.

= Points drawn uniformly from the interior of a convex polygon with k sides, for any constant k. The convex
hull has ©(lg n) expected size.

= Points drawn according to a two-dimensional normal distribution. The convex hull has ®v!2") expected
size.

a. Given two convex polygons with n, and n, vertices respectively, show how to compute the convex hull
of all n; + n, points in O(n, + n,) time. (The polygons may overlap.)

b. Show that the convex hull of a set of n points drawn independently according to a sparse-hulled
distribution can be computed in O(n) expected time. (Hint: Recursively find the convex hulls of the first
n/2 points and the second n/2 points, and then combine the results.)

& FREV | < Day Day Up > | NEXT o

mk: @MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0221.html 11/18/2012

