

33.1 Line-segment properties

Several of the computational-geometry algorithms in this chapter will require answers to questions about the
properties of line segments. A convex combination of two distinct points p1 = (x1, y1) and p2 = (x2, y2) is any

point p3 = (x3, y3) such that for some α in the range 0 ≤ α ≤ 1, we have x3 = αx1 + (1 - α)x2 and y3 = αy1 +

(1 - α)y2. We also write that p3 = αp1 + (1 - α)p2. Intuitively, p3 is any point that is on the line passing through

p1 and p2 and is on or between p1 and p2 on the line. Given two distinct points p1 and p2, the line segment

 is the set of convex combinations of p1 and p2. We call p1 and p2 the endpoints of segment .

Sometimes the ordering of p1 and p2 matters, and we speak of the directed segment . If p1 is the origin

(0, 0), then we can treat the directed segment as the vector p2.

In this section, we shall explore the following questions:

1. Given two directed segments and , is clockwise from with respect to their common
endpoint p0?

2. Given two line segments and , if we traverse and then , do we make a left turn at
point p1?

3. Do line segments and intersect?

There are no restrictions on the given points.

We can answer each question in O(1) time, which should come as no surprise since the input size of each
question is O(1). Moreover, our methods will use only additions, subtractions, multiplications, and
comparisons. We need neither division nor trigonometric functions, both of which can be computationally
expensive and prone to problems with round-off error. For example, the "straightforward" method of

determining whether two segments intersect-compute the line equation of the form y = mx + b for each

segment (m is the slope and b is the y-intercept), find the point of intersection of the lines, and check whether

this point is on both segments-uses division to find the point of intersection. When the segments are nearly

parallel, this method is very sensitive to the precision of the division operation on real computers. The
method in this section, which avoids division, is much more accurate.

Cross products

Computing cross products is at the heart of our line-segment methods. Consider vectors p1 and p2, shown in

Figure 33.1(a). The cross product p1 × p2 can be interpreted as the signed area of the parallelogram

formed by the points (0, 0), p1, p2, and p1 + p2 = (x1 + x2, y1 + y2). An equivalent, but more useful, definition

gives the cross product as the determinant of a matrix:[1]

 < Day Day Up >

Page 1 of 633.1 Line-segment properties

11/18/2012mk:@MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0218.html

Figure 33.1: (a) The cross product of vectors p1 and p2 is the signed area of the parallelogram. (b) The

lightly shaded region contains vectors that are clockwise from p. The darkly shaded region contains
vectors that are counterclockwise from p.

If p1 × p2 is positive, then p1 is clockwise from p2 with respect to the origin (0, 0); if this cross product is

negative, then p1 is counterclockwise from p2. (See Exercise 33.1-1.) Figure 33.1(b) shows the clockwise

and counterclockwise regions relative to a vector p. A boundary condition arises if the cross product is 0; in
this case, the vectors are collinear, pointing in either the same or opposite directions.

To determine whether a directed segment is clockwise from a directed segment with respect to their
common endpoint p0, we simply translate to use p0 as the origin. That is, we let p1 - p0 denote the vector

, where and , and we define p2 - p0 similarly. We then compute the cross

product

(p1 - p0) × (p2 - p0) = (x1 - x0)(y2 - y0) - (x2 - x0)(y1 - y0).

If this cross product is positive, then is clockwise from ; if negative, it is counterclockwise.

Determining whether consecutive segments turn left or right

Our next question is whether two consecutive line segments and turn left or right at point p1.

Equivalently, we want a method to determine which way a given angle ∠ p0p1p2 turns. Cross products allow

us to answer this question without computing the angle. As shown in Figure 33.2, we simply check whether

directed segment is clockwise or counterclockwise relative to directed segment . To do this, we

compute the cross product (p2 - p0) × (p1 - p0). If the sign of this cross product is negative, then is

counterclockwise with respect to , and thus we make a left turn at p1. A positive cross product indicates a

clockwise orientation and a right turn. A cross product of 0 means that points p0, p1, and p2 are collinear.

Figure 33.2: Using the cross product to determine how consecutive line segments and turn at
point p1. We check whether the directed segment is clockwise or counterclockwise relative to the

directed segment . (a) If counterclockwise, the points make a left turn. (b) If clockwise, they make a
right turn.

Determining whether two line segments intersect

To determine whether two line segments intersect, we check whether each segment straddles the line
containing the other. A segment straddles a line if point p1 lies on one side of the line and point p2 lies

Page 2 of 633.1 Line-segment properties

11/18/2012mk:@MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0218.html

on the other side. A boundary case arises if p1 or p2 lies directly on the line. Two line segments intersect if

and only if either (or both) of the following conditions holds:

1. Each segment straddles the line containing the other.

2. An endpoint of one segment lies on the other segment. (This condition comes from the boundary
case.)

The following procedures implement this idea. SEGMENTS-INTERSECT returns TRUE if segments and
 intersect and FALSE if they do not. It calls the subroutines DIRECTION, which computes relative

orientations using the cross-product method above, and ON-SEGMENT, which determines whether a point
known to be collinear with a segment lies on that segment.

SEGMENTS-INTERSECT(p1, p2, p3, p4)

 1 d1 ← DIRECTION(p3, p4, p1)

 2 d2 ← DIRECTION(p3, p4, p2)

 3 d3 ← DIRECTION(p1, p2, p3)

 4 d4 ← DIRECTION(p1, p2, p4)

 5 if ((d1 > 0 and d2 < 0) or (d1 < 0 and d2 > 0)) and

 ((d3 > 0 and d4 < 0) or (d3 < 0 and d4 > 0))

 6 then return TRUE
 7 elseif d1 = 0 and ON-SEGMENT(p3, p4, p1)

 8 then return TRUE
 9 elseif d2 = 0 and ON-SEGMENT(p3, p4, p2)

10 then return TRUE
11 elseif d3 = 0 and ON-SEGMENT(p1, p2, p3)

12 then return TRUE
13 elseif d4 = 0 and ON-SEGMENT(p1, p2, p4)

14 then return TRUE
15 else return FALSE

DIRECTION(pi, pj, pk)

1 return (pk - pi) × (pj - pi)

ON-SEGMENT(pi, pj, pk)

1 if min(xi, xj) ≤ xk ≤ max(xi, xj) and min(yi, yj) ≤ yk ≤ max(yi, yj)

2 then return TRUE
3 else return FALSE

SEGMENTS-INTERSECT works as follows. Lines 1-4 compute the relative orientation di of each endpoint pi

with respect to the other segment. If all the relative orientations are nonzero, then we can easily determine
whether segments and intersect, as follows. Segment straddles the line containing segment

 if directed segments and have opposite orientations relative to . In this case, the signs of d1

and d2 differ. Similarly, straddles the line containing if the signs of d3 and d4 differ. If the test of line

5 is true, then the segments straddle each other, and SEGMENTS-INTERSECT returns TRUE. Figure 33.3
(a) shows this case. Otherwise, the segments do not straddle each other's lines, although a boundary case
may apply. If all the relative orientations are nonzero, no boundary case applies. All the tests against 0 in

lines 7-13 then fail, and SEGMENTS-INTERSECT returns FALSE in line 15. Figure 33.3(b) shows this case.

Page 3 of 633.1 Line-segment properties

11/18/2012mk:@MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0218.html

Figure 33.3: Cases in the procedure SEGMENTS-INTERSECT. (a) The segments and straddle
each other's lines. Because straddles the line containing , the signs of the cross products (p3 -

p1) × (p2 - p1) and (p4 - p1) × (p2 - p1) differ. Because straddles the line containing , the signs of

the cross products (p1 - p3) × (p4 - p3) and (p2 - p3) × (p4 - p3) differ. (b) Segment straddles the line

containing , but does not straddle the line containing . The signs of the cross products (p1 -

p3) × (p4 - p3) and (p2 - p3) × (p4 - p3) are the same. (c) Point p3 is collinear with and is between p1

and p2. (d) Point p3 is collinear with , but it is not between p1 and p2. The segments do not

intersect.

A boundary case occurs if any relative orientation dk is 0. Here, we know that pk is collinear with the other

segment. It is directly on the other segment if and only if it is between the endpoints of the other segment.
The procedure ON-SEGMENT returns whether pk is between the endpoints of segment , which will be

the other segment when called in lines 7-13; the procedure assumes that pk is collinear with segment .

Figures 33.3(c) and (d) show cases with collinear points. In Figure 33.3(c), p3 is on , and so

SEGMENTS-INTERSECT returns TRUE in line 12. No endpoints are on other segments in Figure 33.3(d),
and so SEGMENTS-INTERSECT returns FALSE in line 15.

Other applications of cross products

Later sections of this chapter will introduce additional uses for cross products. In Section 33.3, we shall need
to sort a set of points according to their polar angles with respect to a given origin. As Exercise 33.1-3 asks
you to show, cross products can be used to perform the comparisons in the sorting procedure. In Section
33.2, we shall use red-black trees to maintain the vertical ordering of a set of line segments. Rather than
keeping explicit key values, we shall replace each key comparison in the red-black tree code by a cross-
product calculation to determine which of two segments that intersect a given vertical line is above the other.

Exercises 33.1-1

Prove that if p1 × p2 is positive, then vector p1 is clockwise from vector p2 with respect to the origin (0, 0) and

that if this cross product is negative, then p1 is counterclockwise from p2.

Exercises 33.1-2

Professor Powell proposes that only the x-dimension needs to be tested in line 1 of ON-SEGMENT. Show
why the professor is wrong.

Exercises 33.1-3

The polar angle of a point p1 with respect to an origin point p0 is the angle of the vector p1 - p0 in the usual

polar coordinate system. For example, the polar angle of (3, 5) with respect to (2, 4) is the angle of the vector

(1, 1), which is 45 degrees or π/4 radians. The polar angle of (3, 3) with respect to (2, 4) is the angle of the

Page 4 of 633.1 Line-segment properties

11/18/2012mk:@MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0218.html

vector (1, -1), which is 315 degrees or 7π/4 radians. Write pseudocode to sort a sequence 〈p1, p2, ..., pn〉
of n points according to their polar angles with respect to a given origin point p0. Your procedure should take

O(n lg n) time and use cross products to compare angles.

Exercises 33.1-4

Show how to determine in O(n2 lg n) time whether any three points in a set of n points are collinear.

Exercises 33.1-5

A polygon is a piecewise-linear, closed curve in the plane. That is, it is a curve ending on itself that is formed
by a sequence of straight-line segments, called the sides of the polygon. A point joining two consecutive
sides is called a vertex of the polygon. If the polygon is simple, as we shall generally assume, it does not
cross itself. The set of points in the plane enclosed by a simple polygon forms the interior of the polygon, the
set of points on the polygon itself forms its boundary, and the set of points surrounding the polygon forms its
exterior. A simple polygon is convex if, given any two points on its boundary or in its interior, all points on
the line segment drawn between them are contained in the polygon's boundary or interior.

Professor Amundsen proposes the following method to determine whether a sequence 〈p0, p1, ..., pn-1〉 of

n points forms the consecutive vertices of a convex polygon. Output "yes" if the set {∠ pi pi+1 pi+2 : i = 0, 1, ...,

n - 1}, where subscript addition is performed modulo n, does not contain both left turns and right turns;
otherwise, output "no." Show that although this method runs in linear time, it does not always produce the
correct answer. Modify the professor's method so that it always produces the correct answer in linear time.

Exercises 33.1-6

Given a point p0 = (x0, y0), the right horizontal ray from p0 is the set of points {pi = (xi, yi) : xi ≥ x0 and yi =

y0}, that is, it is the set of points due right of p0 along with p0 itself. Show how to determine whether a given

right horizontal ray from p0 intersects a line segment in O(1) time by reducing the problem to that of

determining whether two line segments intersect.

Exercises 33.1-7

One way to determine whether a point p0 is in the interior of a simple, but not necessarily convex, polygon P

is to look at any ray from p0 and check that the ray intersects the boundary of P an odd number of times but

that p0 itself is not on the boundary of P. Show how to compute in Θ(n) time whether a point p0 is in the

interior of an n-vertex polygon P. (Hint: Use Exercise 33.1-6. Make sure your algorithm is correct when the
ray intersects the polygon boundary at a vertex and when the ray overlaps a side of the polygon.)

Exercises 33.1-8

Show how to compute the area of an n-vertex simple, but not necessarily convex, polygon in Θ(n) time. (See

Exercise 33.1-5 for definitions pertaining to polygons.)

[1]Actually, the cross product is a three-dimensional concept. It is a vector that is perpendicular to both p1 and

p2 according to the "right-hand rule" and whose magnitude is |x1 y2 - x2 y1|. In this chapter, however, it will

prove convenient to treat the cross product simply as the value x1 y2 - x2 y1.

Page 5 of 633.1 Line-segment properties

11/18/2012mk:@MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0218.html

 < Day Day Up >

Page 6 of 633.1 Line-segment properties

11/18/2012mk:@MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0218.html

