

33.2 Determining whether any pair of segments intersects

This section presents an algorithm for determining whether any two line segments in a set of segments
intersect. The algorithm uses a technique known as "sweeping," which is common to many computational-
geometry algorithms. Moreover, as the exercises at the end of this section show, this algorithm, or simple
variations of it, can be used to solve other computational-geometry problems.

The algorithm runs in O(n lg n) time, where n is the number of segments we are given. It determines only

whether or not any intersection exists; it does not print all the intersections. (By Exercise 33.2-1, it takes Ω

(n2) time in the worst case to find all the intersections in a set of n line segments.)

In sweeping, an imaginary vertical sweep line passes through the given set of geometric objects, usually
from left to right. The spatial dimension that the sweep line moves across, in this case the x-dimension, is
treated as a dimension of time. Sweeping provides a method for ordering geometric objects, usually by
placing them into a dynamic data structure, and for taking advantage of relationships among them. The line-
segment-intersection algorithm in this section considers all the line-segment endpoints in left-to-right order
and checks for an intersection each time it encounters an endpoint.

To describe and prove correct our algorithm for determining whether any two of n line segments intersect, we
shall make two simplifying assumptions. First, we assume that no input segment is vertical. Second, we
assume that no three input segments intersect at a single point. Exercises 33.2-8 and 33.2-9 ask you to
show that the algorithm is robust enough that it needs only a slight modification to work even when these
assumptions do not hold. Indeed, removing such simplifying assumptions and dealing with boundary
conditions is often the most difficult part of programming computational-geometry algorithms and proving
their correctness.

Ordering segments

Since we assume that there are no vertical segments, any input segment that intersects a given vertical
sweep line intersects it at a single point. Thus, we can order the segments that intersect a vertical sweep line
according to the y-coordinates of the points of intersection.

To be more precise, consider two segments s1 and s2. We say that these segments are comparable at x if

the vertical sweep line with x-coordinate x intersects both of them. We say that s1 is above s2 at x, written s1

>x s2, if s1 and s2 are comparable at x and the intersection of s1 with the sweep line at x is higher than the

intersection of s2 with the same sweep line. In Figure 33.4(a), for example, we have the relationships a >r c,

a >t b, b >t c, a >t c, and b >u c. Segment d is not comparable with any other segment.

Figure 33.4: The ordering among line segments at various vertical sweep lines. (a) We have a >r c, a >t

b, b >t c, a >r c, and b >u c. Segment d is comparable with no other segment shown. (b) When

segments e and f intersect, their orders are reversed: we have e >v f but f >w e. Any sweep line (such as

z) that passes through the shaded region has e and f consecutive in its total order.

For any given x, the relation ">x" is a total order (see Section B.2) on segments that intersect the sweep line

at x. The order may differ for differing values of x, however, as segments enter and leave the ordering. A
segment enters the ordering when its left endpoint is encountered by the sweep, and it leaves the ordering
when its right endpoint is encountered.

 < Day Day Up >

Page 1 of 533.2 Determining whether any pair of segments intersects

11/18/2012mk:@MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0219.html

What happens when the sweep line passes through the intersection of two segments? As Figure 33.4(b)
shows, their positions in the total order are reversed. Sweep lines v and w are to the left and right,

respectively, of the point of intersection of segments e and f, and we have e >v f and f >w e. Note that

because we assume that no three segments intersect at the same point, there must be some vertical sweep

line x for which intersecting segments e and f are consecutive in the total order >x. Any sweep line that

passes through the shaded region of Figure 33.4(b), such as z, has e and f consecutive in its total order.

Moving the sweep line

Sweeping algorithms typically manage two sets of data:

1. The sweep-line status gives the relationships among the objects intersected by the sweep line.

2. The event-point schedule is a sequence of x-coordinates, ordered from left to right, that defines the
halting positions of the sweep line. We call each such halting position an event point. Changes to the
sweep-line status occur only at event points.

For some algorithms (the algorithm asked for in Exercise 33.2-7, for example), the event-point schedule is
determined dynamically as the algorithm progresses. The algorithm at hand, however, determines the event
points statically, based solely on simple properties of the input data. In particular, each segment endpoint is
an event point. We sort the segment endpoints by increasing x-coordinate and proceed from left to right. (If
two or more endpoints are covertical, i.e., they have the same x-coordinate, we break the tie by putting all
the covertical left endpoints before the covertical right endpoints. Within a set of covertical left endpoints, we
put those with lower y-coordinates first, and do the same within a set of covertical right endpoints.) We insert
a segment into the sweep-line status when its left endpoint is encountered, and we delete it from the sweep-
line status when its right endpoint is encountered. Whenever two segments first become consecutive in the
total order, we check whether they intersect.

The sweep-line status is a total order T, for which we require the following operations:

� INSERT(T, s): insert segment s into T.

� DELETE(T, s): delete segment s from T.

� ABOVE(T, s): return the segment immediately above segment s in T.

� BELOW(T, s): return the segment immediately below segment s in T.

If there are n segments in the input, we can perform each of the above operations in O(lg n) time using red-
black trees. Recall that the red-black-tree operations in Chapter 13 involve comparing keys. We can replace
the key comparisons by comparisons that use cross products to determine the relative ordering of two
segments (see Exercise 33.2-2).

Segment-intersection pseudocode

The following algorithm takes as input a set S of n line segments, returning the boolean value TRUE if any
pair of segments in S intersects, and FALSE otherwise. The total order T is implemented by a red-black tree.

ANY-SEGMENTS-INTERSECT(S)

 1 T ← Ø

 2 sort the endpoints of the segments in S from left to right,
 breaking ties by putting left endpoints before right endpoints
 and breaking further ties by putting points with lower
 y-coordinates first
 3 for each point p in the sorted list of endpoints

 4 do if p is the left endpoint of a segment s
 5 then INSERT(T, s)
 6 if (ABOVE(T, s) exists and intersects s)
 or (BELOW(T, s) exists and intersects s)
 7 then return TRUE

 8 if p is the right endpoint of a segment s
 9 then if both ABOVE(T, s) and BELOW(T, s) exist

Page 2 of 533.2 Determining whether any pair of segments intersects

11/18/2012mk:@MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0219.html

 and ABOVE(T, s) intersects BELOW(T, s)
10 then return TRUE
11 DELETE(T, s)
12 return FALSE

Figure 33.5 illustrates the execution of the algorithm. Line 1 initializes the total order to be empty. Line 2
determines the event-point schedule by sorting the 2n segment endpoints from left to right, breaking ties as
described above. Note that line 2 can be performed by lexicographically sorting the endpoints on (x, e, y),
where x and y are the usual coordinates and e = 0 for a left endpoint and e = 1 for a right endpoint.

Figure 33.5: The execution of ANY-SEGMENTS-INTERSECT. Each dashed line is the sweep line at an
event point, and the ordering of segment names below each sweep line is the total order T at the end of
the for loop in which the corresponding event point is processed. The intersection of segments d and b is
found when segment c is deleted.

Each iteration of the for loop of lines 3-11 processes one event point p. If p is the left endpoint of a segment

s, line 5 adds s to the total order, and lines 6-7 return TRUE if s intersects either of the segments it is

consecutive with in the total order defined by the sweep line passing through p. (A boundary condition occurs

if p lies on another segment s′. In this case, we require only that s and s′ be placed consecutively into T.) If p

is the right endpoint of a segment s, then s is to be deleted from the total order. Lines 9-10 return TRUE if

there is an intersection between the segments surrounding s in the total order defined by the sweep line
passing through p; these segments will become consecutive in the total order when s is deleted. If these
segments do not intersect, line 11 deletes segment s from the total order. Finally, if no intersections are
found in processing all the 2n event points, line 12 returns FALSE.

Correctness

To show that ANY-SEGMENTS-INTERSECT is correct, we will prove that the call ANY-SEGMENTS-
INTERSECT(S) returns TRUE if and only if there is an intersection among the segments in S.

It is easy to see that ANY-SEGMENTS-INTERSECT returns TRUE (on lines 7 and 10) only if it finds an
intersection between two of the input segments. Hence, if it returns TRUE, there is an intersection.

We also need to show the converse: that if there is an intersection, then ANY-SEGMENTS-INTERSECT
returns TRUE. Let us suppose that there is at least one intersection. Let p be the leftmost intersection point,
breaking ties by choosing the one with the lowest y-coordinate, and let a and b be the segments that
intersect at p. Since no intersections occur to the left of p, the order given by T is correct at all points to the
left of p. Because no three segments intersect at the same point, there exists a sweep line z at which a and b

become consecutive in the total order.[2] Moreover, z is to the left of p or goes through p. There exists a
segment endpoint q on sweep line z that is the event point at which a and b become consecutive in the total
order. If p is on sweep line z, then q = p. If p is not on sweep line z, then q is to the left of p. In either case,
the order given by T is correct just before q is encountered. (Here is where we use the lexicographic order in
which the algorithm processes event points. Because p is the lowest of the leftmost intersection points, even

if p is on sweep line z and there is another intersection point p′ on z, event point q = p is processed before

the other intersection p′ can interfere with the total order T. Moreover, even if p is the left endpoint of one

segment, say a, and the right endpoint of the other segment, say b, because left endpoint events occur

Page 3 of 533.2 Determining whether any pair of segments intersects

11/18/2012mk:@MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0219.html

before right endpoint events, segment b is in T when segment a is first encountered.) Either event point q is
processed by ANY-SEGMENTS-INTERSECT or it is not processed.

If q is processed by ANY-SEGMENTS-INTERSECT, there are only two possibilities for the action taken:

1. Either a or b is inserted into T, and the other segment is above or below it in the total order. Lines 4-7

detect this case.

2. Segments a and b are already in T, and a segment between them in the total order is deleted, making

a and b become consecutive. Lines 8-11 detect this case.

In either case, the intersection p is found and ANY-SEGMENTS-INTERSECT returns TRUE.

If event point q is not processed by ANY-SEGMENTS-INTERSECT, the procedure must have returned
before processing all event points. This situation could have occurred only if ANY-SEGMENTS-INTERSECT
had already found an intersection and returned TRUE.

Thus, if there is an intersection, ANY-SEGMENTS-INTERSECT returns TRUE. As we have already seen, if
ANY-SEGMENTS-INTERSECT returns TRUE, there is an intersection. Therefore, ANY-SEGMENTS-
INTERSECT always returns a correct answer.

Running time

If there are n segments in set S, then ANY-SEGMENTS-INTERSECT runs in time O(n lg n). Line 1 takes O
(1) time. Line 2 takes O(n lg n) time, using merge sort or heapsort. Since there are 2n event points, the for

loop of lines 3-11 iterates at most 2n times. Each iteration takes O(lg n) time, since each red-black-tree

operation takes O(lg n) time and, using the method of Section 33.1, each intersection test takes O(1) time.
The total time is thus O(n lg n).

Exercises 33.2-1

Show that there may be Θ(n2) intersections in a set of n line segments.

Exercises 33.2-2

Given two segments a and b that are comparable at x, show how to determine in O(1) time which of a >x b

or b >x a holds. Assume that neither segment is vertical. (Hint: If a and b do not intersect, you can just use

cross products. If a and b intersect-which you can of course determine using only cross products-you can

still use only addition, subtraction, and multiplication, avoiding division. Of course, in the application of the >x

relation used here, if a and b intersect, we can just stop and declare that we have found an intersection.)

Exercises 33.2-3

Professor Maginot suggests that we modify ANY-SEGMENTS-INTERSECT so that instead of returning upon
finding an intersection, it prints the segments that intersect and continues on to the next iteration of the for
loop. The professor calls the resulting procedure PRINT-INTERSECTING-SEGMENTS and claims that it
prints all intersections, from left to right, as they occur in the set of line segments. Show that the professor is
wrong on two counts by giving a set of segments for which the first intersection found by PRINT-
INTERSECTING-SEGMENTS is not the leftmost one and a set of segments for which PRINT-
INTERSECTING-SEGMENTS fails to find all the intersections.

Exercises 33.2-4

Give an O(n lg n)-time algorithm to determine whether an n-vertex polygon is simple.

Page 4 of 533.2 Determining whether any pair of segments intersects

11/18/2012mk:@MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0219.html

Exercises 33.2-5

Give an O(n lg n)-time algorithm to determine whether two simple polygons with a total of n vertices intersect.

Exercises 33.2-6

A disk consists of a circle plus its interior and is represented by its center point and radius. Two disks
intersect if they have any point in common. Give an O(n lg n)-time algorithm to determine whether any two
disks in a set of n intersect.

Exercises 33.2-7

Given a set of n line segments containing a total of k intersections, show how to output all k intersections in
O((n + k) lg n) time.

Exercises 33.2-8

Argue that ANY-SEGMENTS-INTERSECT works correctly even if three or more segments intersect at the
same point.

Exercises 33.2-9

Show that ANY-SEGMENTS-INTERSECT works correctly in the presence of vertical segments if the bottom
endpoint of a vertical segment is processed as if it were a left endpoint and the top endpoint is processed as
if it were a right endpoint. How does your answer to Exercise 33.2-2 change if vertical segments are
allowed?

[2]If we allow three segments to intersect at the same point, there may be an intervening segment c that

intersects both a and b at point p. That is, we may have a <w c and c <w b for all sweep lines w to the left of

p for which a <w b. Exercise 33.2-8 asks you to show that ANY-SEGMENTS-INTERSECT is correct even if

three segments do intersect at the same point.

 < Day Day Up >

Page 5 of 533.2 Determining whether any pair of segments intersects

11/18/2012mk:@MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0219.html

