33.3 Finding the convex hull Page 1 of 7

4 FREV < Day Day Up > | NEXT 3

33.3 Finding the convex hull

The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on
the boundary of P or in its interior. (See Exercise 33.1-5 for a precise definition of a convex polygon.) We
denote the convex hull of Q by CH(Q). Intuitively, we can think of each point in Q as being a nail sticking out
from a board. The convex hull is then the shape formed by a tight rubber band that surrounds all the nails.
Figure 33.6 shows a set of points and its convex hull.

P

lrll.._l Ma i o) Fo
'y] ¥ g
s

Py
Figure 33.6: A set of points Q = {p,, p;, ..., Py} With its convex hull CH(Q) in gray.

In this section, we shall present two algorithms that compute the convex hull of a set of n points. Both
algorithms output the vertices of the convex hull in counterclockwise order. The first, known as Graham's
scan, runs in O(nlg n) time. The second, called Jarvis's march, runs in O(nh) time, where his the number of
vertices of the convex hull. As can be seen from Figure 33.6, every vertex of CH(Q) is a point in Q. Both
algorithms exploit this property, deciding which vertices in Q to keep as vertices of the convex hull and which
vertices in Q to throw out.

There are, in fact, several methods that compute convex hulls in O(n Ig n) time. Both Graham's scan and
Jarvis's march use a technique called "rotational sweep," processing vertices in the order of the polar angles
they form with a reference vertex. Other methods include the following.

= In the incremental method, the points are sorted from left to right, yielding a sequence (p1, Pos -

pn) . At the ith stage, the convex hull of the 7 - 1 leftmost points, CH({p,, p,, ..., p;4}), is updated
according to the ith point from the left, thus forming CH({p;, ps, .., p}). As Exercise 33.3-6 asks you to
show, this method can be implemented to take a total of O(nlg n) time.

n In the divide-and-conquer method, in ©(n) time the set of n points is divided into two subsets, one

containing the leftmost [n/2] points and one containing the rightmost | /2] points, the convex hulls of

the subsets are computed recursively, and then a clever method is used to combine the hulls in O(n)
time. The running time is described by the familiar recurrence T(n) = 2T(n/2) + O(n), and so the divide-
and-conquer method runs in O(n Ig n) time.

= The prune-and-search method is similar to the worst-case linear-time median algorithm of Section 9.3.
It finds the upper portion (or "upper chain") of the convex hull by repeatedly throwing out a constant
fraction of the remaining points until only the upper chain of the convex hull remains. It then does the
same for the lower chain. This method is asymptotically the fastest: if the convex hull contains h vertices,
it runs in only O(n g h) time.

Computing the convex hull of a set of points is an interesting problem in its own right. Moreover, algorithms
for some other computational-geometry problems start by computing a convex hull. Consider, for example,
the two-dimensional farthest-pair problem: we are given a set of n points in the plane and wish to find the
two points whose distance from each other is maximum. As Exercise 33.3-3 asks you to prove, these two
points must be vertices of the convex hull. Although we won't prove it here, the farthest pair of vertices of an
n-vertex convex polygon can be found in O(n) time. Thus, by computing the convex hull of the n input points
in O(n Ig n) time and then finding the farthest pair of the resulting convex-polygon vertices, we can find the

mk: @MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0220.html 11/18/2012

33.3 Finding the convex hull Page 2 of 7

farthest pair of points in any set of n points in O(nIg n) time.

Graham's scan

Graham's scan solves the convex-hull problem by maintaining a stack S of candidate points. Each point of
the input set Q is pushed once onto the stack, and the points that are not vertices of CH(Q) are eventually
popped from the stack. When the algorithm terminates, stack S contains exactly the vertices of CH(Q), in
counterclockwise order of their appearance on the boundary.

The procedure GRAHAM-SCAN takes as input a set Q of points, where |Q| > 3. It calls the functions TOP
(S), which returns the point on top of stack S without changing S, and NEXT-TO-TOP(S), which returns the
point one entry below the top of stack S without changing S. As we shall prove in a moment, the stack S
returned by GRAHAM-SCAN contains, from bottom to top, exactly the vertices of CH(Q) in counterclockwise
order.
GRAHAM-SCAN(Q)
1 let p, be the point in Q with the minimum y-coordinate,

or the leftmost such point in case of a tie
2 let <py, p,, ..., P, be the remaining points in Q,

sorted by polar angle in counterclockwise order around p,

(if more than one point has the same angle, remove all but

the one that is farthest from py)
3 PUSH(p,, S)
4 PUSH(p,, S)
5 PUSH(p,, S)
6 fori—3tom

7 do while the angle formed by points NEXT-TO-TOP(S), TOP(S),
and p; makes a nonleft turn

8 do POP(S)
9 PUSH(p; S)
10 return S

Figure 33.7 illustrates the progress of GRAHAM-SCAN. Line 1 chooses point p, as the point with the lowest
y-coordinate, picking the leftmost such point in case of a tie. Since there is no point in Q that is below p, and
any other points with the same y-coordinate are to its right, p, is a vertex of CH(Q). Line 2 sorts the
remaining points of Q by polar angle relative to p,, using the same method-comparing cross products-as in
Exercise 33.1-3. If two or more points have the same polar angle relative to p,, all but the farthest such point
are convex combinations of p, and the farthest point, and so we remove them entirely from consideration.
We let m denote the number of points other than p, that remain. The polar angle, measured in radians, of
each point in Qrelative to p; is in the half-open interval [0, 17). Since the points are sorted according to polar
angles, they are sorted in counterclockwise order relative to p,. We designate this sorted sequence of points
by <p1, Pos e pm> - Note that points p, and p,, are vertices of CH(Q) (see Exercise 33.3-1). Figure 33.7(a)
shows the points of Figure 33.6 sequentially numbered in order of increasing polar angle relative to p,.

mk: @MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0220.html 11/18/2012

33.3 Finding the convex hull Page 3 of 7

] ik Py L]
Figure 33.7: The execution of GRAHAM-SCAN on the set Q of Figure 33.6. The current convex hull
contained in stack S is shown in gray at each step. (a) The sequence (P15 Pos +os p12> of points
numbered in order of increasing polar angle relative to p,, and the initial stack S containing p,, p;, and

p,. (b)-(k) Stack S after each iteration of the for loop of lines 6-9. Dashed lines show nonleft turns, which
cause points to be popped from the stack. In part (h), for example, the right turn at angle #p,pgp, causes
pg to be popped, and then the right turn at angle ~pgp,py causes p, to be popped. (/) The convex hull

mk: @MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0220.html 11/18/2012

33.3 Finding the convex hull Page 4 of 7

returned by the procedure, which matches that of Figure 33.6.

The remainder of the procedure uses the stack S. Lines 3-5 initialize the stack to contain, from bottom to
top, the first three points p,, p;, and p,. Figure 33.7(a) shows the initial stack S. The for loop of lines 6-9
iterates once for each point in the subsequence (p3, Pys - pm) . The intent is that after processing point
p; » stack S contains, from bottom to top, the vertices of CH({ p,, py, -.., p}) in counterclockwise order. The

while loop of lines 7-8 removes points from the stack if they are found not to be vertices of the convex hull.

When we traverse the convex hull counterclockwise, we should make a left turn at each vertex. Thus, each
time the while loop finds a vertex at which we make a nonleft turn, the vertex is popped from the stack. (By
checking for a nonleft turn, rather than just a right turn, this test precludes the possibility of a straight angle at
a vertex of the resulting convex hull. We want no straight angles, since no vertex of a convex polygon may
be a convex combination of other vertices of the polygon.) After we pop all vertices that have nonleft turns

when heading toward point p;, we push p, onto the stack. Figures 33.7(b)-(k) show the state of the stack S

after each iteration of the for loop. Finally, GRAHAM-SCAN returns the stack Sin line 10. Figure 33.7(1)
shows the corresponding convex hull.

The following theorem formally proves the correctness of GRAHAM-SCAN.

Theorem 33.1: (Correctness of Graham's scan)

If GRAHAM-SCAN is run on a set Q of points, where |Q| = 3, then at termination, the stack S consists of,
from bottom to top, exactly the vertices of CH(Q) in counterclockwise order.

Proof After line 2, we have the sequence of points (p1, Pos - pm> . Let us define, for i =2, 3, ..., m, the
subset of points Q; = {p,, p;, ---, p}. The points in Q - Q,, are those that were removed because they had the
same polar angle relative to p, as some point in Q,; these points are not in CH(Q), and so CH(Q,) = CH(Q).

Thus, it suffices to show that when GRAHAM-SCAN terminates, the stack S consists of the vertices of CH
(Q,,) in counterclockwise order from bottom to top. Note that just as p,, p;, and p,, are vertices of CH(Q), the

points p,, p;, and p; are all vertices of CH(Q)).

The proof uses the following loop invariant:

At the start of each iteration of the for loop of lines 6-9, stack S consists of, from bottom to top, exactly
the vertices of CH(Q,) in counterclockwise order.

Initialization: The invariant holds the first time we execute line 6, since at that time, stack S consists of
exactly the vertices of Q, = Q,, and this set of three vertices forms its own convex hull. Moreover, they

appear in counterclockwise order from bottom to top.

Maintenance: Entering an iteration of the for loop, the top point on stack Sis p, ;, which was pushed at
the end of the previous iteration (or before the first iteration, when i = 3). Let p; be the top point on S after
the while loop of lines 7-8 is executed but before line 9 pushes p, and let p, be the point just below p;on
S. At the moment that p; is the top point on S and we have not yet pushed p;, stack S contains exactly

the same points it contained after iteration j of the for loop. By the loop invariant, therefore, S contains
exactly the vertices of CH(Q]-) at that moment, and they appear in counterclockwise order from bottom to

top.
Let us continue to focus on this moment just before p; is pushed. Referring to Figure 33.8(a), because

pjs polar angle relative to p, is greater than pj‘s polar angle, and because the angle ZPPP; makes a left
turn (otherwise we would have popped p;), we see that since S contains exactly the vertices of CH(O]-),

once we push p;, stack S will contain exactly the vertices of CH(O]- U {p}), still in counterclockwise order
from bottom to top.

mk: @MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0220.html 11/18/2012

33.3 Finding the convex hull Page 5 of 7

W j!
P [

(1] i
Figure 33.8: The proof of correctness of GRAHAM-SCAN. (a) Because p;s polar angle relative to p,
is greater than pj's polar angle, and because the angle 2Py P makes a left turn, adding p; to CH(Oj)
gives exactly the vertices of CH(Qj U{p}). (b) If the angle ~ppp; makes a nonleft turn, then p, is

either in the interior of the triangle formed by p,, p, and p; or on a side of the triangle, and it cannot
be a vertex of CH(Q).

We now show that CH(Qj U {p}) is the same set of points as CH(Q). Consider any point p, that was
popped during iteration / of the for loop, and let p, be the point just below p, on stack S at the time p, was
popped (p, might be pj). The angle ~#ppp; makes a nonleft turn, and the polar angle of p, relative to p,
is greater than the polar angle of p. As Figure 33.8(b) shows, p, must be either in the interior of the
triangle formed by p,, p,, and p; or on a side of this triangle (but it is not a vertex of the triangle). Clearly,
since p, is within a triangle formed by three other points of Qj, it cannot be a vertex of CH(Q)). Since p, is
not a vertex of CH(Q)), we have that

(33.1) CH(Q; — {p,}) = CH(Q;) .

Let P, be the set of points that were popped during iteration i of the for loop. Since the equality (33.1)
applies for all points in P, we can apply it repeatedly to show that CH(Q; - P) = CH(Q)). But Q;- P, = Oj U
{p}, and so we conclude that CH(Oj U {p}) = CH(Q;- P) = CH(Q)).

We have shown that once we push p;, stack S contains exactly the vertices of CH(Q) in

counterclockwise order from bottom to top. Incrementing i will then cause the loop invariant to hold for
the next iteration.

Termination: When the loop terminates, we have i= m + 1, and so the loop invariant implies that stack
S consists of exactly the vertices of CH(Q,), which is CH(Q), in counterclockwise order from bottom to

top. This completes the proof.

We now show that the running time of GRAHAM-SCAN is O(n Ig n), where n = |Q)|. Line 1 takes ©(n) time.

Line 2 takes O(n Ig n) time, using merge sort or heapsort to sort the polar angles and the cross-product
method of Section 33.1 to compare angles. (Removing all but the farthest point with the same polar angle

can be done in a total of O(n) time.) Lines 3-5 take O(1) time. Because m < n - 1, the for loop of lines 6-9 is
executed at most n - 3 times. Since PUSH takes O(1) time, each iteration takes O(1) time exclusive of the
time spent in the while loop of lines 7-8, and thus overall the for loop takes O(n) time exclusive of the
nested while loop.

We use aggregate analysis to show that the while loop takes O(n) time overall. For i= 0, 1, ..., m, each point
p;is pushed onto stack S exactly once. As in the analysis of the MULTIPOP procedure of Section 17.1, we
observe that there is at most one POP operation for each PUSH operation. At least three points-p,, p;, and

p,—are never popped from the stack, so that in fact at most m - 2 POP operations are performed in total.
Each iteration of the while loop performs one POP, and so there are at most m - 2 iterations of the while
loop altogether. Since the test in line 7 takes O(1) time, each call of POP takes O(1) time, and since m < n -

mk: @MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0220.html 11/18/2012

33.3 Finding the convex hull Page 6 of 7

1, the total time taken by the while loop is O(n). Thus, the running time of GRAHAM-SCAN is O(n g n).

Jarvis's march

Jarvis's march computes the convex hull of a set Q of points by a technique known as package wrapping
(or gift wrapping). The algorithm runs in time O(nh), where h is the number of vertices of CH(Q). When h is
o(lg n), Jarvis's march is asymptotically faster than Graham's scan.

Intuitively, Jarvis's march simulates wrapping a taut piece of paper around the set Q. We start by taping the
end of the paper to the lowest point in the set, that is, to the same point p, with which we start Graham's

scan. This point is a vertex of the convex hull. We pull the paper to the right to make it taut, and then we pull
it higher until it touches a point. This point must also be a vertex of the convex hull. Keeping the paper taut,
we continue in this way around the set of vertices until we come back to our original point p,.

More formally, Jarvis's march builds a sequence H = (po, Pqs e ph_1) of the vertices of CH(Q). We start
with p,. As Figure 33.9 shows, the next convex hull vertex p, has the smallest polar angle with respect to p;,.
(In case of ties, we choose the point farthest from p,.) Similarly, p, has the smallest polar angle with respect
to p,, and so on. When we reach the highest vertex, say p, (breaking ties by choosing the farthest such

vertex), we have constructed, as Figure 33.9 shows, the right chain of CH(Q). To construct the left chain,
we start at p, and choose p,, ; as the point with the smallest polar angle with respect to p,, but from the

negative x-axis. We continue on, forming the left chain by taking polar angles from the negative x-axis, until
we come back to our original vertex p,.

lelt cham |:|-_::hl choom
- =

- -
left chain right chain

Figure 33.9: The operation of Jarvis's march. The first vertex chosen is the lowest point p,. The next
vertex, p;, has the smallest polar angle of any point with respect to p,. Then, p, has the smallest polar
angle with respect to p,. The right chain goes as high as the highest point p,. Then, the left chain is
constructed by finding smallest polar angles with respect to the negative x-axis.

We could implement Jarvis's march in one conceptual sweep around the convex hull, that is, without
separately constructing the right and left chains. Such implementations typically keep track of the angle of
the last convex-hull side chosen and require the sequence of angles of hull sides to be strictly increasing (in
the range of 0 to 21T radians). The advantage of constructing separate chains is that we need not explicitly

compute angles; the techniques of Section 33.1 suffice to compare angles.

If implemented properly, Jarvis's march has a running time of O(nh). For each of the h vertices of CH(Q), we
find the vertex with the minimum polar angle. Each comparison between polar angles takes O(1) time, using
the techniques of Section 33.1. As Section 9.1 shows, we can compute the minimum of n values in O(n) time
if each comparison takes O(1) time. Thus, Jarvis's march takes O(nh) time.

Exercises 33.3-1

mk: @MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0220.html 11/18/2012

33.3 Finding the convex hull Page 7 of 7

Prove that in the procedure GRAHAM-SCAN, points p, and p,. must be vertices of CH(Q).

Exercise 33.3-2

Consider a model of computation that supports addition, comparison, and multiplication and for which there
is a lower bound of Q(n Ig n) to sort n numbers. Prove that Q(n g n) is a lower bound for computing, in order,
the vertices of the convex hull of a set of n points in such a model.

Exercise 33.3-3

Given a set of points Q, prove that the pair of points farthest from each other must be vertices of CH(Q).

Exercise 33.3-4

For a given polygon P and a point g on its boundary, the shadow of g is the set of points r such that the
segment 4" is entirely on the boundary or in the interior of P.

A polygon Pis star-shaped if there exists a point p in the interior of P that is in the shadow of every point on
the boundary of P. The set of all such points p is called the kernel of P. (See Figure 33.10.) Given an n-
vertex, star-shaped polygon P specified by its vertices in counterclockwise order, show how to compute CH
(P) in O(n) time.

5) /!1 .\ .
.-"f T ___..-"""' / _____--r'l i

.-"' .|./—-"-- 3
La) [l
Figure 33.10: The definition of a star-shaped polygon, for use in Exercise 33.3-4. (a) A star-shaped

polygon. The segment from point p to any point g on the boundary intersects the boundary only at q. (b)
A non-star-shaped polygon. The shaded region on the left is the shadow of g, and the shaded region on

the right is the shadow of g'. Since these regions are disjoint, the kernel is empty.

Exercise 33.3-5

In the on-line convex-hull problem, we are given the set Q of n points one point at a time. After receiving
each point, we are to compute the convex hull of the points seen so far. Obviously, we could run Graham's

scan once for each point, with a total running time of O(n? Ig n). Show how to solve the on-line convex-hull
problem in a total of O(n?) time.

Exercise 33.3-6: x

Show how to implement the incremental method for computing the convex hull of n points so that it runs in O
(nlg n) time.

‘ PREY | < Day Day Up > | MEXT ‘

mk: @MSITStore:F:\carti_download\cs\algorithm\cormen.chm::/3444/DDU0220.html 11/18/2012

